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ABSTRACT 

An analog device which is capable of enhancing the effective resolution 

of certain analytical instruments is described. This enhancement is 

effected by the mathematical operation of deconvolution. An improvement 

in  resolution by a factor of six has been achieved. 

capable of computing the convolution integral  which is used to describe the 

This device is also 

effects of various instrument parameters  on instrument performance. 

The theory of operation of this device is given and information sufficient 

for  construction and operation is supplied. Examples of resul ts  obtained 

A in  several  typical situations a r e  presented. 
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1,  Introduction 

1. 1 Discussion of Resolution 

When describing the performance of an instrument that 

has  a s  i t s  output a spectrum, i t  is convenient to define a t e rm 

called resolution. 

one  c l a s s  of instruments to another because different physical 

quantities are being measured, and thus the line shapes vary in 

mathematical form.  However, problems arise because there are 

inconsistencies in defining resolution within a given c lass  of 

instruments.  Rayleigh's cri terion is frequently used for  defining 

the resolution of an optical system. Physically, this corresponds 

The methods of defining resolution vary from 

to a 19 pe r  cent drop in amplitude between two adjacent m a x i m a d  

equal amplitude, but there a r e  devices that can easily detect a 

4-5  pe r  cent drop in amplitude. 

disagreement in defining resolution. Consequently, i t  is always 

necessary to write the equation of resolution. However, even 

A s  a resul t  of this, there is 

when the equation of resolution is  given, i t  is st i l l  only a semi- 

quantitative description of an instrument's performance, for i t  

at tempts to give neither a n y  reasons for the limitation in  pe r -  

formance nor methods of treating the "unresolved" data. 

1 , 2  DefiEition of Convolution Intepral 

It has been known since the las t  century that a more  

useful treatment of instrument performance exists in the Four ie r  

convolution integral. Let us immediately write this equation 

F(x')  = Jm T(x)A(x'-x)dx 
-00 
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where: F (x ' )  is  the instrument 's  output spectrum which includes 

instrument aberrations and is  called the output function; 

T(x) i s  the ideal spectrum that is  f ree  of instrument 

aberrations and i s  called the true function; 

A(x ' -x )  is a function that character izes  the aberrations 

introduced by the instrument on T(x) and i s  called the . 
apparatus function. 

1 . 3  Conditions for Applying Integral to Describe Instrument 

P e  rfo rmanc e 

Certain easily satisfied conditions a r e  necessary  for the 

use  of this equation. The f i r s t  condition i s  that the various peaks 

in the spectrum obey the law of superposition. The second is  

that the apparatus function be stable throughout an  experiment. 

The third is that the peaks in  the same spectral  range have the 

same characterist ic shapes when normalized. 

It is  of interest  a t  this point to note the following 

If we normalize the apparatus function 

Jm A(x'-x)dx = 1 

and employ the convolution identity found in Mikusinski (1959) 

f O0 -dm A(x'-x)T(x)dx'dx = JmA (z)dz J03 T(x)dx ( 3 )  
-03 -03 -00 

*' 

then integrating equation (1) over x'  yields 
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JmF(x')dx' = /" T(x)dx. 
-W -00 

This resul t  is very satisfying from the viewpoint of energy 

in that the total energy in a spectrum is the same for F(x') and 

T(x), and hence, only a redistribution of energy occurs  upon 

integration. 

1.  4 Application of Integral t2 Pract ical  Spectrometers 

There a r e  two cases  of particular interest  in applying 

I _--. I 

the convolution integral to practical  spectrometers .  

Ji: 
i s  the case when A(x'-x) = d(x'-x). 

The f i r s t  

Carrying out the integration, 

we readily see that F(x') = T(x') .  This case corresponds to a 

spectrometer that has infinite resolving power; thus, i t  is only 

of hypothetical interest .  

1 ap(x-bi) .  This corresponds to a completely resolved spectrum 
i 
that exists a t  the input. 

The second case  is when T(x) = 

The resul t  of the integration depends 

upon the width of the apparatus function and the distances between 

delta functions. If the distances between the delta functions a r e  

grea te r  than the width of the base of the apparatus function, the 

integration yields a se r i e s  of completely resolved peaks whose 

shapes a r e  governed by A(x'-x) and whose amplitudes a r e  

determined by the ai coefficients. 

delta functions a r e  l e s s  than the width of the base of the apparatus 

If the distances between the 
-. 

function, the integration yields a s e r i e s  of overlapping peaks - 
%ax'-x) i s  a Dirac delta function which i s  a mathematically 
improper function. 
(1) 

(2) 

It has the following properties:  
6(x-b) = 0 for x # b 

Sf(x)b(x-b)dx = f(b) if the region of integration includes 
x = b, and i s  zero otherwise. 



whose shapes a r e  governed by A(x'-x) and by the ai coefficients. 

To use  the convolution integral in a practical  situation one 

needs to know the apparatus function. 

determined by introducing a single component into the instrument 

which is  mathematically representable by T(x) = d(x-b).  

carrying out the integration, we see F ( x ' )  = A(x'-b).  

of determining A(x'-x) is analogous to determining the impulsive 

response of e lectr ical  and mechanical systems,  and thus 

A(x'-x) can be viewed as character is t ic  of the response of the 

instrument. 

1 . 5  Previous Convolution Studies 

This function can be 

Again, 

This method 
. 

Because of the usefulness of the convolution integral i n  

predicting the effect on the output function of various instrument 

parameters  like finite sl i t  widths, considerable effort has been 

spent on writing the causes of aberrat ions in t e rms  of convolu- 

tion t ransforms.  

(1960)  a r e  comprehensive reviews in this vein. 

The papers by Rautian (1958) and Duffieux 

The mathemati- 

ca l  properties of convolutions which a r e  used in these reviews 

a r e  well documented in texts like that of Mikusinski (1959) and 

of Widder (1955). Descriptions of instrument aberrations 

have also been given in te rms  of information theory by King and 

Emslie (1951 and 1953). 

1 . 6  Definition of Deconvolution 

In addition to explaining the effects of aberrations on the 

true spectrum, this equation offers  the opportunity to increase 
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the effective resolution of an instrument by solving the equation 

fo r  T(x) knowing F(x') andA(x'-x).  

as deconvolution. 

'decomposition' and 'entschmierung'. 

analytical methods is quit e complicated and often tedious. 

ever ,  the advent of the computer, both analog and digital, has  

s t i r r ed  renewed in te res t  in  solving for  T(x) .  

1. 7 Previous Deconvolution Studies 

Solving for  T(x) is  known 

Deconvolution is also known as 'unfolding', 

The solution for T(x)  by 

How - 

-_ --- - . - ---.._ - .-_I____ 

S oine of the deconvolution methods that a r e  available 

a r e  presented in the following publications. 

solutions have been demonstrated by Whittaker and Watson 

(1963), Fox and Goodwin (1953) and Sachenko (196 1); however, 

practical  application of these methods to generalized situations 

would require a digital computer. 

Morrison, using an IBM 7074 computer, consists of taking the 

Four ie r  transformation of the output function and the apparatus 

furction, followed by a point-by-point computation of the true 

function (1963). 

and Doi (1964) and by Rol le t t  and Higgs (1962). 

fitting techniques using the digital computer have been developed 

by Skarsgard (1961) and by Gardner  (1960). 

Purely analytical 

A method developed by 

Similar methods have been developed by Mori 

Iterative curve 

Manually adjusted analog systems using function gener- 

a to r s  and summers  have been described by French e t  al (1954) 

and by Noble g t  a1 (1959). Noble's system has been developed 

by E.  1. DuPont de Nemours and Company. Fully automated 

analog methods have been developed and another suggested by 
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Ker-dall (1961 ,  1962 ,  and 1 9 6 6 ) .  
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. 
2 .  Statement of Problem 

The specific problem is the development of a new 

analog method of deconvolution. 

analog computer, based on distributed electrostatic fields, 

that is capable of both convolution and deconvolution and of 

automatically plotting the results. 

method of convoluting and deconvoluting has  distinct advantages 

over previous methods, both analog and digital. 

This thesis will describe an 

It will be shown that this 



a 

3 .  Theory of Operation of the Convoluting Mode 

In figure 1 the shaped electrode A moves along the 

x-axis over a surface T a t  a small  distance - d above i t .  The 

potentials on the surface T describe the true function T(x) and 

f o r  any given value of x a r e  uniform in the y direction. The 

s h p e o f  c lectrde A i s  given by the apparatus function y = A(x'-x),  

where x' gives the instantaneous position of the ,electrode along 

the x axis.  

The capacitor C is chosen to be sufficiently large so that 

the potential of electrode A is always very smal l  compared with 

the potentials of surface T. The amplifier B amplifies the 

small  variations in potential that appear ac ross  C.  These 

represent the output function F (x ' ) .  

If electrode A is  brought into the position shown from 

an initial position where al l  the potentials beneath the electrode 

were zero,  there  will be a redistribution of charge between A 

and C,  which will produce a positive signal a t  the input of the 

operational amplifier i f  T(x) i s  described by positive potentials. 

Consider an element of T with a width - dx and potential 

t(x). The field between t(x) and any pa r t  of A directly above i t  

i s  

E = t(x)/d 
X 

assuming that A i s  very close to ground. 

element of charge d q t h a t  is  induced on A is  given by Gauss '  

law, therefore 

The differential 

dq = E  E a(x-x')dx o x  (7) 
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where E 

find the total  induced charge on A ,  we integrate yielding 

is the permittivity constant in m .  k. s .  units. To 
0 

q(x '>  = -03 s" cot (x)a(x -x ' )dx/d ' ( 8 )  

Using the relation q = C V  and writing V = f(x ') ,  we ar r ive  a t  

f(x ')  = - t(x)a(x-x')dx (9)  

where c is the capacitance of C, assumed large compared with 

all other interelectrode capacities, and G is the gain of 

amplifier B. 

Upon inspection, it i s  easily seen that equation (9) has  

the form of a convolution integral. Comparing i t  with equation 

( I ) ,  we see that i f  t(x) is made to correspond with the true 

function T(x) ,  and a(x-x ' )  to the apparatus function A(x'-x), 

then f(x ')  differs from F ( x ' )  only by a constant scaling factor.  

Care  has to be taken so that the shapes representing A ( x ' - x )  

a r e  oriented to allow for the reversed sense of the argument 

in  a(x-x'). 

for all values of x ' .under consideration by sweeping electrode A 

from one end of surface T to the other.  

The complete range of values of F(x') a r e  obtained 

This section is an adaptation of the theory presented by 

Kendall (1966). 
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4. Theory of Operation of the Deconvolut ing Mode 

In figure 2 i t  can be seen that there a r e  two capacitors 

connected to the input of amplifier B. 

consists of surface T and electrode A and shall be called CA. 

The second is Cf which serves  to isolate the amplifier B from 

the source of the voltage describing f(x'). Let u s  assume that 

the voltage V describing f(x ')  i s  always positive and that 

amplifier B has  an inverted output. Since the input of amplifier 

B i s  isolated by the two capacitors, we may write 

The f i r s t  capacitor 

f 

where q is th A 

( i u j  

charge on CA and qf i s  the ch-rge on C Using 

the equation relating the charge and voltage on a capacitor,  we 

may write 

f '  

where V 

Placing equations (1 1) and (12)  into equation ( lo) ,  we get 

i s  the voltage that appears  at the input of amplifier B. B 

CA(V*--VB) t c (V -v ) = 0 f f B  
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which upon solving for  VB becomes 

- ' A ~ A  + 

vB - 
'A + 'f 

B Returning t o  equation ( 1  1) and making the assumption that V 

is negligible compared to VA, t hen  

qA = (15) 

Placing this equation into (14) yields 

'A +'fVf 

'A + 'f 

v =  B 

To compute qA, let us consider a differential element k o n  

surface T. 

and applying Gauss '  law while using the relation E(x) = -. where 

t(x), is a t r ia l  solution for t(x), then 

Assuming zgain that the input of B is close to ground 
t(x+ 

d 

0 t(x)Ta(x-x')dx 

d 
- 

dqA - 

But dqA = t(x),dCA, hence 

Eoa(x-x')dx 

d 
dCA = 

which upon integration yields 

E a  
0 

(19) CA = - a(x-x')dx = - 
-00 d d 

where a i s  just  the a r e a  of elect rode A .  Reconsidering dq and A - 



integrating, we get 

E 

9 A - T  - 0 . I t(x)Ta(x-x ')dx. 
-00 

Placing (19) and (20) into (16)  

To exterd the analysis to a practical  situation, the s t ray  

capacrty to ground C must  be iccluded, which upon introduction S 

into (16)  yields 

c 7 - %o J t(x)Ta(x-x')dx + cfvf 
( 2 2 )  -- d -03 - 

vB - € a  
0 -t Cf t cs d 

The voltdge V 

surface enclosing the sides of the capacitors that a r e  directly 

could also be obtained by considering a Gaussian B 

connected to amplifier B.  To continue, we write the equation for 

the output of ;Lmplifier B which is  

(23) 

00 - G k  -m f t(x)Ta(x-x')dx t 

t(x), = -GVB = 
K 

where G i s  t t e  gsin of amplifier B and for  convenience we have 
e a  

defined K =-- + Cf t C s o  d 
0 

Rewriting (23) 
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E a, t(x),K J t(x),a(x-x + cfvf = 7. 0 
c 

-a2 d 

If the gain is made very large compared to t(x)TK so that V 

very small, then 

i s  B 

The refore 

However, if this i s  t rue then the voltages t(x), must  describe 

very closely the negative of the true function t(x) that gave 

r i se  to f (x ' ) .  Hence, if electrode A has been oriented to allow 

for the leversed sense of the argument in a (x-x ' ) ,  we have 

de co nvolu tion. 

. 
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Experimental Apparatus 

De scription of Physical Structure of Computer 

The same physical s t ructure  was used for both the 

---.-.._-- 5.  

5 . 1  ______._ -- - - __ - - - - - 

convoluting and deconvoluting modes. The surface T consisted 

of 125 copper s t r ips  that were mounted on a plexiglass platen 

that had been machined to a tolerance of t 0 .  001 in. These 

s t r ips  were insulated from each other and were connected to 

0 .  Olpf polystyrene-mylar capacitors.  A plexiglass car r iage  

equipped with wipers was made to roll  on t racks that were  also 

machined to t - 0.001 in. a s  shown in figure 3 .  

1 
was necessitated by the - relationship shown in equation (9) and d 

the small value of d chosen to minimize fringing and to obtain a 

This tolerance 

- 
good signal to noise ratio. In order  to maintain this tolerance 

under variations in climatic conditions, a system of braces  and 

jacks was added. 

The shaped electrode A was mounted on an inser t  that 

fitted into the frame of the carria.ge. This inser t  had a three 

point suspension system so that the electrode could be made 

paral le l  to T. The electrode was made from aluminum foil, 

and mounting to the inser t  was done with thin p re s su re  sensitive 

double coated tape. Shaped electrode A was driven ac ross  T by 

the writing a r m  of the X - Y  recorder .  

Procedure for Constructing Shaped Electrode 

The shape of the electrode was prepared by f i r s t  making 

.--___-_______ - -- _-. 5 . 2  

a tracing of  the function a(x-x')-  

fo rm of a(x-x')  was made. 

F r o m  this tracing a cardboard 

This form was placed over  the 

aluminum foil that was already mounted on the inser t .  A r azo r ' s  
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edge was run along the edge of the f3rmJ thus producing the 

function on  the foil .  The cardboard fo rm was moved slightly and 

a second line describing a (x -x t )  was cut into the foil. A se t  of 

tweezers was used to remove the small  s t r ip  of foil between the 

two functions. Resulting was the shaped electrode describing 

a(x-xt)  that was immediately surrounded by the remaining portion 

of the foil which was grounded to minimize fringing as seen in 

figure 3 .  

5. 3 Auxiliary Memory 

In addition to the capacitive memory  for t(x), another 125 

copper strips and capacitors of the same value and type were  

mounted on  the platen. 

f(x ') .  

This served a s  a n  ex t ra  memory for  

This i s  shown a s  detached from the platen in figure 3 to 

indicate that i t  was non-essential for the operation of the device 

in either mode of operation. 

5 . 4  Electronics of Convoluting __ Mode 

The electronics associated with the convoluting mode of 

operation are  shown in figure 3 .  The copper s t r ips  and the 

electrode describing a(x-x ' )  corresponded respectively to 

surface T and electrode A mentioned in the section on theory. 

Voltages were introduced on T by direct  contact to a power supply 

o r  automatically by connecting the output of the curve follower to 

the appropriate wiper on the ca r t ,  Changes in these voltages of 

l e s s  than 0 . 2 5  per  cent were typical for storage t imes of ten hours.  

Polarization tes ts  were also performed with voltages up to 350V 

with EO detectable permanent polarization of the capacitors.  Cable 

. 

. 



L connected electrode A with amplifier B.  

graphite coated coaxial cable where the graphite coating helped 

to reduce the noise introduced by the cable flexing a s  the 

car r iage  swept ac ross  surface T. 

meter  with an input impedance of 1014Q. 

impedance was necessary to minimize leakage. 

capacity of the electrode A and associated cables was in the 

hundreds of picofarads range, a t ime constant in the ten thousand 

second range was possible which f a r  exceeded the time for a 

sweep between the two zeroing positions. 

pf mylar capacitor. 

voltages on A near  ground. 

maximum of 0 .75  V which corresponded to severa l  hundred volts 

on T; thus, the A voltages essentially did not a l te r  voltage dis-  

tributions on T. 

electrode A was over the zeroing position to remove any residual 

charge on C. Switch S was specifically designed for operation in 

such a high impedance network. 

were used to drive a plexiglass rod that made and broke the con- 

tacts  of the shielded switch s. 

This cable was a 

Amplifier B was an electro-  

This high input 

Since the 

Capacitor C was a 1000 

Thiscapacity w a s  large enough to keep the 

The voltages on A seldom exceeded a 

Switch S short-circuited capacitor C when 

A shielded relay coil and a r m  

This method was necessary to 

eliminate the l a r g e  switching transients associated with standard 

commercial  re lays .  The switching transient associated with this 

arrangement was + - 2mV. Finally, the output of amplifier B was 

plotted on the X - Y  recorder 

5.  5 Electronics of Deconvoluting Mode 

The electronics of the deconvoluting mode a r e  shown in the 

block diagram of figure 4. Surface T, electrode A ,  cable L, 
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switch S and amplifier B have been described previeusly. 

offset was introduced into the feedback loop to allow easy 

compensatior, for the small dc level of amplifier B. 

2 were necessary to eliminate high frequency noise generated by 

arriplifier B-  to reduce sixty-cycle noise, and to limit the 

response of the system. 

provide the large gain required by the theory. 

run with a gain of 300 when the system was near  equilibrium, 

while amp1if:ers E and F were run at gains of 10 and 2 

respectively, giving a net amplifier gain of 6000. The electronic 

details of the dc offset, f i l ters 1 and 2 ,  and amplifiers E and F 

a r e  shown in figure 5. The logic was introduced to prevent any 

positive voltages from being deposited on T. This corresponded 

to rejecting nonphysical solutions since most spectra ,  excluding 

derivative spectra ,  a r e  such that they lie on only one side of the 

base line, 

that were low enough to pass f i l ters  1 and 2 but were  still able 

to prevent t(x) f rom being smooth. However, the smoothing of 

fi l ter  3 did not remove the important s t ructure  of t(x) 

seen in  the resul ts .  

ated by an optical line follower viewing plots of f(x') ~ The 

maximum output voltage of the line follower was 6V but an 

additional potentiometer was included to control the maximum 

voltage appearing ac ross  C 

curve follower network to smooth V 

was a trimmer capacitor ranging in value f rom 80- 150 pf. 

The dc 

F i l t e r s  1 and 

Amplifiers E and F were added to 

Amplifier B was 

F i l te r  3 was constructed to eliminate frequencies 

as will be 
7 

The voltage V describing f(x') was gener-  f 

A capacitor was placed in  this f '  

Finally, the capacitor Cf f "  

This 
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capacitor gave added control over the magnitude of the voltage 

appearing at the input of amplifier B. 

details  of the logic, filter 3 ,  and the curve follower network a r e  

shown in figure 6 .  

The exact electronic 

In figure 4, it can be seen that the oscilloscope and 

recorder  displayed the tr ial  solution as the voltages on T 

were modified. 

This output contained nonphysical resul ts  before they we r e  

rejected by  the logic. 

modification of the t r ia l  solution because of the closed loop 

nature of the system. 

resu l t s  gave a measure  of the mismatch between f(x') and f(x')T. 

It  should be noted a t  this time that the method of successive 

modifications of the voltages on the t(x), memory  and the 

viewing of the nonphysical results before the logic a r e  common 

to the computers of Kendall (1961 and 1962). Moreover, the 

rejection of nonphysical results was included in the programs 

of Mori and Doi (1964). 

The output of amplifier F was also displayed. 

This rejection in turn caused a further 

Viewing the magnitude of these nonphysical 
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6 ,  R e  S U l t 5  

6 .  1 De convolution Without F i l te r  

To i l lustrate the importance of fi l ter  3 ,  figure 7(c) shows 

data that was obtained before i t s  introduction into the system. 

Curve 7(a)  i s  the convolution f(x') in which a(x-x')  is an isosceles 

t r iangle  of a rb i t ra ry  width b a t  the base and t(x) is two approxi- 

mately isosceles  triangles of width 0.246 & a t  the base and a 

distance 0.556 _B between their apexes. This convolution was 

obtained electronically. 

poor regulation of the power supply that was used to introduce 

t(x) on the s t r ips;  thus, the triangles were not exactly isosceles.  

It ca.n be seen, also,, that f(x') does not exactly r e + ~ r n  to the 

base line. 

leakage. 

discrete  auxiliary memory described in  the section on the 

experimental apparatus. 

The jagged structure of 7(c) can be principally attributed to the 

insufficient response suppression of f i l ters  1 and 2 .  

cause of this structure was the discrete  nature of the auxiliary 

memory; however, even when the curve follower was used as the 

memory for f(x'),  this structure was still observed. The attempt 

to produce the triangular structure of t(x) is apparent in 7(c). 

The slight asymmetry i s  due to the 

This i s  due to the flexing of cable L and some minor 

Curve 7(b) i s  a plot of the convolution as stored in the 

Curve 7(c) i s  the deconvolution of 7(b). 

A secondary 

The remaining deconvolution data that shall be presented 

wereobtamed with fi l ter  3 in the system and with the curve 

follower serving a s  the memory for f(x'). 
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6 . 2  Deconvolution to a Delta Function S i n g s  

Curve 8(a)  is the convolution f(x ' )  in which 

2 - (x-x')  
7 
L e a (x-x ' )  = 

and t(x) = 6(x) .  A s  is apparent, a(x-x') is a normalized 

Gaussian function of u = 1 where u is the standard deviation. 

Applying the rule for integration involving Dirac delta functions, 

it is  obvious that 

L e f(x ')  = 

The e r r o r  between this electronically computed integration and 

thehand calculated integration is 0 .  52 p e r  cent with respect to 

the width at half height. Again, the failure of f(x') to re turn to 

the base line can be attributed to cable flexing and leakage. 

Cable L was oriented to reduce the s t r e s ses  introduced by 

flexing. Considerable effort was spent in minimizing leakage. 

Cable lengths were reduced to a minimum and extra insulation 

was added where necessary and physically possible. 

represents  the deconvolution back to the "delta function". This 

represents an enhancement in resolution by a factor of approxi- 

mately 6; that is, the width at half-height of 8(b) is  a sixth of the 

width at half-height of 8(a). 

pletely to the delta function, which is equivalent to having only one 

s t r ip  charged, because the response of the system has been 

Curve 8(b) 

The system could not re turn com- 

deliberately limited for reasons already stated. 
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(a) CONVOLUTION OF A GAUSSIAN AND A DELTA FUNCTION SINGLET 
(b) OECONVOLUTION OF 8(a) 

FIGURE 8 
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6 . 3  Deconvolution to a Delta Function Doublet 

Curve 9(a)  is the convolution f(x ')  of 

- ( X - x y 2  
2 a(x-x') = e 

6 
and t(x) = a16(x t 0 . 2 6 7 ~ )  t a26(x - 0 . 2 6 7 ~ )  where the amplitude 

coefficients a and a2 are equal and their  sum equals one and 

where is  the width at halfheight  of a(x-xl). More commonly 

1 

this is known as a doublet with equal peak heights .  This 

integration can be compared with figure ll(a) which was hand 

calculated. The e r r o r  in width a t  half-height is 1. 7 pe r  cent due 

to causes  already mentioned. Curve 9(b) represents  the 

deconvolution of 9(a). The doublet s t ructure  is obtained but there  

i s  a small  e r r o r  in peak heights. Instead of amplitude coefficients 

being equal to 0.500, a equals 0.470 and a equals 0. 530.  This 1 2 

e r r o r  can be attributed to the e r r o r s  in  the convolution 9(a), to the 

leakage and cable flexing and to the ill-behaved mathematical 

nature 

6.4 

of deconvolution. 

Deconvolution to a Delta Function Triplet  

Curve l O ( a )  is the convolution of 

2 - (x-x') 
3 
L e a(x-xl) = 
F 

and t(x) = a16(x t 0 . 5 3 3 ~ )  t a26(x) t a36(x - 0 . 5 3 3 ~ )  where the 

amplitude coefficients a a 

equals one and where w is the width a t  half-height of a(x-x') .  

This is simply known as a triplet  with equal peak heights. 

e r r o r  in width a t  half-height of 10(a) compared to the hand 

and a3 a r e  equal and their sum 1' 2' 

The 
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(a) CONVOLUTION OFA GAUSSIAN AND A DELTA FUNCTION DOUBLET 
(b) DECONVOLUTION OF 9(a) 

FIGURE 9 

3 0  

, 

X' 

'r 

X 



. 

. 

3 1  

X' 

X 

(01 CONVOLU" OF A GAUSSIAN AND A DELTA FUNCTION TRIPLET 
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(a) HAND COMPUTED CONVOLUTION OF A GAUSSIAN AND A DELTA FUNCTION DOUBLET 
(b) HAND COMPUTED CONVOLUTION OFA GAUSSIAN AND A DELTA FUNCTION TRIPLET 
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calculated l l ( b )  i s  2 .  00 per cent. Curve lO(b) i s  the deconvolution 

of lO(a). The triplet  structure is obtained but there a r e  e r r o r s  

in peak heights. 

equal to 0 . 3 3 3 ,  a l  equals 0.424, a 

Instead of all the amplitude coefficients being 

equals 0 .  372 and a3 equals 2 

0. 194. Again, the sources of e r r o r  are the same as those 

stated in  the previous paragraph. 

6 .  5 Deconvolution to a Square Function Doublet and 

Importance of Gain 

Curve 12(a) i s  the convolution of 

2 - (x-x') 
L e a(x-x i )  = 

and t(x) = a l  k(x - 0.267~) - H(x - 0 . 5 3 3 ~ )  + a H(x - 1 . 0 6 6 ~ )  - I 2 c  
- 

H(x - 1. 333w)J where Hfx)  i s  a Heaviside step function, the 

coefficients a and a 

and - w is the widthat  half height of a(x-x'). 

a r e  equal with their  sum equal to one, 1 2 

This true 

function is just  two square functions of equal height and width 

and separated Lrom each other by a distance equal to 0. 533w. 

The reason for f(x') not beginning at zero  is  that this computation 

was performed with the l imits of integration reversed; that is, 

the shaped electrode was swept f rom right to left while in the 

previous computations the electrode was swept from left to 

right. The reasons for the small  drift  f rom the base line have 

been listed previously. Figure 12(b) is the deconvolution of 12(a). 

This figure i l lustrates  the importance of sufficient loop gain. 

The amplifier gains that were used to generate curves  6 and y 

were 200 and 600 respectively. It is seen that these curves 
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(a) CONVOLUTION OF A GAUSSIAN AND A SQUARE FUNCTION DOUBLET 
(b) DECONVOLUTION OF 12(a) WHERE Ga > Gg > Gy > G, 

FIGURE 12 
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follow qui te  closely f(x'). 

to generate curves p and a were 2000 and 6000 respectively. 

The doublet structure is apparent in curve p and the doublet is 

almost completely separated in curve a. The system could not 

produce square functions because of the filters but the e r r o r  in 

peak heights is small. 

being equal, al equals 0.486 and a2 equals 0. 514. 

The amplifier gains that were used 

Instead of both amplitude coefficients 
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7 .  Conclusions and Summary 

7 . 1  P r oblem s E nc oun te red in De convolution 

The ill-behaved mathematical nature of deconvolution has  

been demonstrated by Fox and Goodwin (1953). The dramatic 

and adverse effect of noise on deconvolution can be explained in 

view of this character is t ic .  

this effect and the work of Morrison (1963) confirms i t ,  

these facts in mind, the resul ts  that have been presented in the 

The work of Rautian (1958) discusses  

With 

previous section a r e  quite favorable despite some of the apparent- 

ly large e r r o r s  of the triplet deconvolution. Reiterating, these 

e r r o r s  can be ascribed to the noise generated by the flexing of 

cable L, the leakage in the system and the e r r o r s  of the 

convolutions being processed. A l l  three of these sources  of 

e r r o r  can be viewed as noise. 

7 . 2  Suggested Improvements to Computer 
_-I-I--- 

Fortunately, the elimination of these sources  of e r r o r  

is possible. A system in which amplifier B i s  mounted on the 

car r iage  in which electrode A is inserted would remove the 

noise generated by the flexing of cable L. The cables that would 

be flexing in such a system would be connected to the curve 

follower and the output of amplifier B, which a r e  low impedance 

sections of the ci rcui t ry .  Amplifier B would have to meet  the 

requirements of the theory and be small to facilitate mounting. 

This arrangement would reduce leakage by reducing the length of 

the cable in  the input circuit  of amplifier B.  A further reduction 

in leakage could be obtained by mounting all cable connections in 

the input circuit on polystyrene o r  teflon blocks. With the 
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removal of these first two sources of e r r o r ,  some of the e r r o r s  

in the convolutions would i n  turn be removed. 

7 . 3  Application to Practical  Data 

At this point the objection might  be raised that the 

convolutions that were deconvoluted were generated by this 

device; thus, a circular  argument seems to have been used to 

demonstrate that the computer functions properly. 

objection can be dispelled by simply referring to the e r r o r s  in 

width a t  half -height between the electronically computed 

convolutions and the hd calculated convolutions. 

e r r o r  was only 2 per  cent and the average e r r o r  was 1.41 pe r  

cent. Because of these small  e r r o r s  between these two 

independently produced convolutions, it is safe to assume that 

data produced by analytical instruments can be processed. 

7 . 4  

This 

The maximum 

Advantages of this Computer over Digital  Methods 

The advantages of this proto type deconvolution computer 

over the digital techniques are  twofold. 

that of the time saved in  processing a given spectrum. 

a spectrum with this computer, only shaped electrode A has to be 

made and aligned. 

digital programs, the time spent in performing these two operations 

is extremely small. This computer can be s e t  up in a laboratory 

to process  data immediately. 

ly with the digital methods unless shared-time facilities a r e  

available which is usually not the case.  

performing a given computation is l e s s  than a minute which is, 

The f i r s t  advantage i s  

To process  

Compared to the time spent in  writing the 

Data cannot be processed immediate- 

The total t ime spent in 
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in general; the same as  o r  shorter  than the digital t imes.  

second advantage i s  that in order  to obtain reasonably good 

The 

deconvolution results smoothing techniques which consist  of 

separate mathematical operations have to be introduced in the 

digital programs while this new computer does this smoothing 

automatically. Finally, the resul ts  of this computer a r e  

comparable to the resul ts  obtained by the digital methods. 

7 .  5 Advantages of this _- Compute-r- overl_Prevjous -An-aAog Methods 

The analog methods of French e t  a1 and Noble e t  a1 a r e  
_I_ 

not in the s t r ic tes t  sense capable of deconvolution. 

devices synthesize the convolution by  manually constructing 

peaks appropriately along the horizontal axis and adding together 

the ordinates of the overlapping portions of these peaks such that 

the ordinate of this sum at  a given horizontal point equals the 

ordinate of the convolution a t  that point. 

Resolver of the DuPont Company, a s  has  been mentioned, i s  an  

adaptation of the Noble device. Curves 9(a) and 10(a) were 

processed by this DuPont device. 

interpreted curve 9(a) a s  a doublet but the amplitude coefficients 

were  in 40 per cent e r r o r  while the computer described in this 

thesis yielded only a 6 per  cent e r r o r  in  amplitude coefficients. 

The DuPont device incorrectly interpreted curve lO(a) as  a 

doublet instead of a triplet while the computer described in this 

thesis correctly interpreted the triplet structure but with a ra ther  

large e r r o r  in amplitude coefficients. In addition, the 

aEalyses of curves  9(a) and lO(a) by the DuPont device were 

These 

The Model 310 Curve 

The DuPont device correct ly  
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performed by the most experienced operator of this device in the 

DuPont organization. 

constructs the solutions on this DuPont device, the solutions a r e  

subject to bias  which i s  not the situation with the computer 

Moreover, because an operator manually 

described in this thesis.  

The previously automated computers of Kendall (1961 and 

1962) were limited to dealing with situations in which the true 

function consisted of a ser ies  of delta functions a t  a limited 

number of positions. This new method is not res t r ic ted in this 

sense as demonstrated by the deconvolution involving t k  two 

square functions. The net a m u n t  of delta function data that can 

be processed a t  one time by the new method i s  approximately 

twice that of these ea r l i e r  computers. The complexity of the 

electronics in these ea r l i e r  computers fa r  exceeds that of the 

new computer. The results of the doublet deconvolution a r e  

comparable to that of these ea r l i e r  computers and i t  is  thought 

. 

that the suggested modifications can bring the tr iplet  data into 

better agreement with the theoretical resul ts .  

7 .  6 Implications of Further Development 

The fur ther  development of this computer is of grea t  

potential importance. 

have the advantages of simple design, reliability, and compact- 

ness a reno t  widely used. With the sixfold increase in effective 

resolution offered by this prototype computer, low resolution 

instruments could be used more widely and their  advantages could 

be exploited. 

Low resolution instruments which usually 

These advantages a r e  of immediate importance in 
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the study of the upper atmosphere and space because of the 

cxpenditures in time and money associated with the firing of a 

rocket and the limited lift capabilities of present  rockets.  

The useful range of operation of moderate resolution 

devices can be extended with considerable savings in money 

compared to the cost  of purchasing a high resolution device. 

components of this computer a r e  commercially available with 

the exception of the plexiglass platen with copper s t r ips .  The 

construction of this platen consumed a very small  amount of 

mater ia l  but a rather  large amount of t ime. 

this construction could be reduced by the methods employed in 

the construction of printed circuitry.  

The 

The time spent in 

The resolution of high resolution instruments could be 

further increased by this computer thus allowing the detailed 

study of phenomena that a r e  considered possible in theory but 

a r e  beyond present experimental technique s .  And finally, the 

discovery of totally new phenomena not known in theory would be 

made possible by the resolution enhancement offered by this 

computer to high resolution instruments.  
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